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Nyquist method for Wigner-Poisson quantum plasmas
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J. Goedert‡

Centro de Cieˆncias Exatas e Tecnolo´gicas – UNISINOS, Avenue Unisinos, 950 93022-000 Sa˜o Leopoldo, Rio de Grande do Sul, Brazil
~Received 17 January 2001; revised manuscript received 16 April 2001; published 25 July 2001!

By means of the Nyquist method, we investigate the linear stability of electrostatic waves in homogeneous
equilibria of quantum plasmas described by the Wigner-Poisson system. We show that, unlike the classical
Vlasov-Poisson system, the Wigner-Poisson case does not necessarily possess a Penrose functional determining
its linear stability properties. The Nyquist method is then applied to a two-stream distribution, for which we
obtain an exact, necessary and sufficient condition for linear stability, as well as to a bump-in-tail equilibrium.
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I. INTRODUCTION

The topic of quantum plasmas has recently attracted c
siderable attention@1–9#. A central reason for this accrue
interest derives from the importance of quantum effects
the performance of today’s microelectronic devices,
which classical transport models are not always adequa
view of the increasing miniaturization level that is now e
tering the submicron domain. Hence, it is desirable
achieve a good understanding of the basic properties
quantum transport models. The Wigner-Poisson system@10–
12# is a quantum transport model that has proven to be s
able in the treatment of quantum devices like the reson
tunneling diode@1#. Moreover, it has been referred@13# to as
perhaps the onlykinetic quantum transport model amenab
to detailed numerical simulation. In the present work,
address the question of the stability of small-amplitu
waves, described by the Wigner-Poisson system.

A convenient tool to investigate the linear stability of sy
tems having a dispersion relation is provided by the Nyqu
method@14,15#. Let us briefly review the basis of this ap
proach. LetD(v,k)50 be the dispersion relation, wherev
and k are the frequency and wave number for sma
amplitude oscillations. In most practical cases, it is imp
sible to solve exactly the dispersion relation forv as a func-
tion of k, some kind of approximation being necessa
Hence, the imaginary part of the frequency, which det
mines the stability properties of the system, can be obtai
only in an approximate way. However, exact results can
found by splitting D in its real and imaginary parts
D(v,k)5Dr(v,k)1 iD i(v,k). Then, for fixedk and realv,
by varying v from minus to plus infinity we can draw
diagram in theDr3Di plane. The resulting curve, known a
the Nyquist diagram, determines the number of unsta
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modes of the system, which equals the number of times
origin is encircled by the diagram@14#. For example, using
the Nyquist method, one can show that equilibrium distrib
tions that are monotonically decreasing functions of the
ergy are stable against small perturbations. Moreover,
symmetric equilibria with at most two maxima, the sign
the so-called Penrose functional@14,15# determines the lin-
ear stability of the classical Vlasov-Poisson system.

In view of the utility of Nyquist’s method for classica
plasmas, it seems desirable to investigate whether it ca
applied to the quantum case too. This approach is justifi
since the linear stability of waves in the Wigner-Poisson s
tem is described by a dispersion relation, and is theref
amenable to Nyquist’s treatment. However, we cannota pri-
ori expect to obtain a result as general as in the class
case. Indeed, as we shall see, the question of stabilit
subtler in the quantum framework, a typical example be
provided by the two-stream instability@16#. For simplicity, in
the present work we shall only consider homogeneous e
libria for one-dimensional electrostatic plasmas consisting
mobile electrons. An immobile ionic background guarante
overall charge neutrality.

This paper is organized as follows. In Sec. II, we deve
the fundamentals of the Nyquist method as applied to qu
tum plasmas described by the Wigner-Poisson system.
stability properties of quantum plasmas are determined
the specific form of the quantum dispersion relation@17,18#.
We show that there are a rich variety of possible behavior
quantum systems, which are not present in classical Vlas
Poisson plasmas. In particular, in Sec. III, we prove tha
quantum analog of the Penrose functional cannot exist.
show this, we consider symmetric equilibria with at mo
two maxima. Nevertheless, the Nyquist method can still
used for Wigner-Poisson plasmas. This is explicitly shown
Sec. IV, where we study a two-stream equilibrium, describ
by a bi-Lorentzian distribution function, which is amenab
to exact calculations. We find an exact criterion for stabili
which reduces to the classical criterion when quantum effe
become negligible. However, large quantum effects can
©2001 The American Physical Society13-1
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stroy the instability occurring in the purely classical case.
Sec. IV, we also include the example of the physically r
evant distribution corresponding to a bump-in-tail equil
rium. Our conclusions are given in Sec. V.

II. QUANTUM DISPERSION RELATIONS

If f (x,v,t) is the Wigner quasidistribution andf the sca-
lar potential, then the Wigner-Poisson system@10–12# reads

] f

]t
1v

] f

]x
5E dv8K~v82v,x,t ! f ~v8,x,t !, ~1!

]2f

]x2
5

e

«0
S E dv f 2n0D , ~2!

whereK(v82v,x,t) is a functional of the scalar potential,

K~v82v,x,t !5
em

i\ E dl

2p\
expS im~v82v !l

\ D
3FfS x2

l

2
,t D2fS x1

l

2
,t D G . ~3!

Here, n0 is a background ionic density,2e and m are the
electron charge and mass,\ is the scaled Planck constant an
«0 is the vacuum dielectric constant. We take perio
boundary conditions in space and assume that for largeuvu, f
and all its velocity derivatives tend to zero. We also assu
that the initial Wigner function is everywhere positive. How
ever, the time evolution determined by Eq.~1! may force the
Wigner function to assume negative values. Hence, a s
interpretation off as a true probability distribution is impos
sible. In spite of that, the Wigner function may be used a
useful mathematical tool to compute macroscopic quanti
such as the charge density and electric current.

The linear stability of a plasma, be it classical or quantu
is determined by the dispersion relation, which is obtain
after Fourier transforming in space and Laplace transform
in time. Following this procedure, we obtain@17# for a fre-
quencyv and a wave numberk

D~k,v!5Dr~k,v!1 iD i~k,v!50, ~4!

where the dispersion functionD(k,v) is given by

Dr~k,v!512
vp

2

n0k2EP

dvF~v !

~v2v/k!22\2k2/4m2
, ~5!

Di~k,v!52
pe2

\«0k3 FFS v

k
1

\k

2mD2FS v

k
2

\k

2mD G . ~6!

In Eq. ~5!, P stands for the principal value symbol andF(v)
denotes the~spatially homogeneous! equilibrium Wigner
function. Also,vp5(n0e2/m«0)1/2 is the usual plasma fre
quency.

The quantum formulas reduce to the classical ones a\
→0. In particular,
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Di~k,v!52
pvp

2

n0k2 S dF

dv D
v5v/k

1O~\2!. ~7!

Moreover, no matter what the value of\, for uvu→` we
haveDr→1 andDi→0, as in the classical case.

The topology of the Nyquist diagram is determined by t
sign of Dr at the points whereDi50. As mentioned in the
Introduction, the number of unstable modes equals the n
ber of times the Nyquist curve encircles the origin. The
fore, unstable modes can only exist ifDr,0 for at least one
of the points whereDi50. In the classical case, the zeroes
the imaginary part of the dispersion function are determin
by the points at which the distribution function has zero d
rivative. In the quantum case, according to Eq.~6!, the deci-
sive points are the real rootsv0 of

F~v01H !5F~v02H !. ~8!

Here and in the following,

v05
v

k
, H5

\k

2m
. ~9!

The geometrical interpretation of Eq.~8! is simple: we have
to find the pointsv0 that are equidistant to any two points
which F has the same value~see Fig. 1!. The corresponding
distance isH. In a sense, Eq.~8! is the finite difference
version of the classical conditiondF/dv(v5v0)50. Finally,
as Nyquist’s diagram is obtained taking exclusively real f
quencies, only the real roots of Eq.~8! are relevant.

The basic tasks we have to perform are first solving E
~8!, obtaining all real rootsv0 for a givenH, and then study-
ing the sign ofDr at each such root, takingv5kv0. Using
Eq. ~5!, we have

Dr~k,v5kv0!512
vp

2

n0k2EP
dv

F~v !

~v2v0!22H2
. ~10!

Now, in the Cauchy principal value sense,

FIG. 1. Graphical representation of the geometric meaning ov0

@solution of Eq.~8!# for a one-humped distribution function. Th
distance betweenv0 and bothv8 andv9 is equal toH. The Wigner
function is represented on the vertical axis and the velocities on
horizontal axis. Units are conveniently rescaled.
3-2
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E
P

dv

~v2v0!22H2
50. ~11!

Using this fact, we can rewrite the real part of the dispers
function in the more convenient way

Dr~k,v5kv0!511
vp

2

n0k2E dv
F~v01H !2F~v !

~v2v0!22H2
.

~12!

In this form, the principal value symbol is not needed an
more, since the integrand is regular asv goes tov06H.
Indeed, using the fact thatF(v01H)5F(v02H) from Eq.
~8!, we find that

lim
v→v06H

F~v01H !2F~v !

~v2v0!22H2
57

1

2H

dF

dv
~v06H ! ~13!

is a finite quantity. A similar~but not identical! regularization
procedure holds in the classical case too@14#.

Equations~8! and ~12! are the fundamental equations f
Nyquist’s method for one-dimensional quantum plasmas
which only electrostatic fields are present. So far, the tre
ment has been completely general. Let us now consider s
particular equilibria in order to analyze the consequence
Eqs.~8! and ~12!.

III. EQUILIBRIA WITH ONE OR TWO MAXIMA

If the equilibrium Wigner functionF(v) has a single
maximumvmax, then the geometric meaning ofv0 is suffi-
cient to show that Eq.~8! has always one, and only one, re
solutionv0 for any value ofH ~see Fig. 1!. Depending on the
shape ofF, this solution can differ considerably fromvmax
~one hasv05vmax when F is symmetric with respect to
vmax). However, asH goes to zero, and again from geomet
cal arguments, we can convince ourselves thatv0 approaches
vmax. Indeed by definitionv0 is equidistant to the pointsv8
andv9 for which F(v8)5F(v9). The corresponding distanc
from v0 to eitherv8 or v9 is H.

Furthermore, for (v2v0)2.H2 we have F(v01H)
.F(v) and for (v2v0)2,H2 we haveF(v01H),F(v).
Hence, the integrand in Eq.~12! is always positive, implying
that the real part of the dispersion function is a positive qu
tity. Also, for uvu→` we haveDr→1 and Di→0. Since
there is only one root for Eq.~8!, we deduce that the Nyquis
diagram cannot encircle the origin, and therefore no unsta
modes can exist for an equilibrium with a single maximu
Thus, no matter how strong quantum effects are, the con
sion is the same as for the classical case.

Let us now consider equilibria with a single minimum
vmin ~see Fig. 2!. This is equivalent to consider equilibrium
Wigner functions with only two maxima, as on physic
grounds the equilibrium function must decay to zero asuvu
→`. Physically, such equilibria correspond to a situati
where two counterstreaming electron populations~with simi-
lar temperatures! co-exist. In the classical case, the Nyqu
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diagram for this situation leads to the construction of t
so-called Penrose functional

P@F#5E dv
F~vmin!2F~v !

~vmin2v !2
, ~14!

which determines the stability properties of the system. T
inequality P@F#,0 is a necessary and sufficient conditio
for instability, for appropriate wave numbers. This can
easily seen from the classical limitH→0 of Eq. ~12!. Clas-
sically, the points v0 where Di50 are the maxima
(6vmax) and the minimum (vmin) of the equilibrium distri-
bution. Forv056vmax, the integrand in Eq.~12! is always
positive, and thus cannot lead to instability. Forv05vmin ,
the real part of the dispersion function reduces toDr51
1(vp

2/n0k2)P@F#. If the Penrose functional is positive, in
stability is ruled out. If it is negative, one can always choo
k small enough so thatDr,0 and therefore some unstab
modes must exist. This completes the proof of the neces
and sufficient Penrose criterion.

The natural question now is whether there exists an a
log Penrose functional for the quantum case. For simplic
in the following we restrict our discussion to Wigner equ
libria that are symmetric aboutvmin , the point at whichF
attains its minimum value. By a Galilean transformation, t
point can be taken asvmin50 without loss of generality. We
first notice that, in the classical case, one only has to cons
the three velocities for which the equilibrium distributio
function has zero derivative. In the quantum case, howe
depending on the shape of the equilibrium Wigner functio
there can be more than three roots for Eq.~8!, with fixed H.
For instance, in Fig. 2, rootv1 ~connecting one increasin
and one decreasing branch of the distribution! can be ob-
tained from the local maximumvmax, by varyingH continu-
ously from zero to a certain value. The rootv2 ~connecting
two decreasing branches of the distribution! is of a different
nature, arising only for sufficiently largeH. Indeed, it is not
difficult to realize that, in the case of two maxima, there a

FIG. 2. Semiclassical (v056v1, solid horizontal lines! and
purely quantum (v056v2, dashed horizontal line! solutions of Eq.
~8! for a symmetrical two-stream equilibrium. Also note thatv0

50 ~dotted line! is always a solution. Units are conveniently re
caled.
3-3
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F. HAAS, G. MANFREDI, AND J. GOEDERT PHYSICAL REVIEW E64 026413
always only three roots for Eq.~8! if H is small enough, and
up to five roots for larger values ofH. Also notice that, for
symmetric equilibria, the pointv50 is always a root, irre-
spective of the value ofH. For a givenH, possessing one
three or five real roots depends on the details of the equ
rium. It is not difficult to prove that, in the case of a two
humped distribution, a sufficient~but not necessary! condi-
tion for having five roots to Eq.~8! is thatF(vmin)50. This
can be shown by plotting the left- and right-hand sides of
~8! as a function ofv0, and looking at the intersections of th
two curves. In general, we obtain that one can have
solutions whenF(vmin) is smaller than a certain threshol
Note however that five roots only appear for sufficien
large values ofH; for small enoughH, there are always only
three roots. In Sec. IV, we shall examine a bi-Lorentz
distribution possessing at most three solutions. In addit
we shall discuss another two equilibria, which possess
solutions for sufficiently largeH.

Let us now consider the question of the existence o
quantum Penrose functional. We need to examine the sig
Dr at the different solutions of Eq.~8!. The rootv05vmin
50 always exists and can yield either a positive or a ne
tive value for the integral in Eq.~12!, depending on the shap
of the equilibrium and the value ofH. One can actually
prove that the integral can be negative only ifH,v!, where
v! is the positive solution of the equationF(0)5F(v!).

We now analyze the other roots of Eq.~8!. Let v1 be the
root obtained from the maximum ofF at the right ofv50 by
varying continuouslyH from zero to some particular valu
~see Fig. 2!. Referring to Fig. 2 and to Eq.~12! ~with v0
5v1), we conclude that the integrand inDr is negative for
2v12H,v,2v11H. Thus, in principle, the real part o
the dispersion function can be negative. However, one co
imagine that the negative contribution for2v12H,v
,2v11H is compensated by a positive contribution cor
sponding tov12H,v,v11H. Let us examine this possi
bility. Using the fact thatF is even, we obtain

E
2v12H

2v11H

dv
F~v11H !2F~v !

~v2v1!22H2

1E
v12H

v11H

dv
F~v11H !2F~v !

~v2v1!22H2

52E
v12H

v11H

dv
@F~v11H !2F~v !#~v21v1

22H2!

@v22~H1v1!2#@v22~H2v1!2#
.

~15!

For v12H,v,v11H, we have F(v).F(v11H), v2

.(H2v1)2 andv2,(H1v1)2. Hence, the integrand in Eq
~15!, which can give the only negative contribution forDr ,
is negative provided

v2,H22v1
2 , ~16!

which is impossible in the prescribed range of velocities,
v1.H by construction. Therefore, we always haveDr(k,v
5kv1).0, wherev1 is the ~semiclassical! root for Eq. ~8!
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obtained from the positive maximum ofF, and the same
argument holds for the symmetric root2v1. This is analo-
gous to the classical result shown above, according to wh
Dr is positive at the two maxima ofF(v). Indeed, the roots
6v1 coincide with6vmax whenH→0.

However, this is not the end of the story for the quantu
case. Indeed, for sufficiently large values ofH, it is possible
to access the roots6v2 ~connecting two decreasing branch
of the distribution! shown in Fig. 2.@This is not in contra-
diction with the above statement that some equilibria o
display three solutions to Eq.~8!. Solutions of the typev2
always exist, although they may correspond todifferent val-
ues of Hthanv1, so that for a fixedH there are indeed only
three roots#. For the roots6v2, which are of a strictly quan-
tum nature, we cannot anymore obtain,a priori, Dr.0. For
instance, for the particular choice ofv2 shown in Fig. 2, the
region 2v22H,v,2v21H contributes a negative valu
to Dr(k,v5kv2). The same is true for the root2v2. This is
because, over most of the region2v22H,v,2v21H one
hasF(v21H),F(v) and (v2v2)2.H2, implying that the
integral in Eq.~12! is negative. Another choice ofv2 may
have yielded the opposite result, so that the sign ofDr(k,v
5kv2) cannot be determineda priori. As the parameterH
depends on the wave number, it is always possible to cho
k so as to access a root of the type6v2, for which the sign
of Dr is undetermined. The conclusion is that there isno
quantum Penrose functional, since the topology of the N
quist diagram can be changed, in an essential way, by
value of Dr at the quantum roots for Eq.~8!. Each specific
equilibrium must be studied in detail. In the following se
tion, we shall illustrate the previous theory using some c
crete examples.

IV. EXAMPLES OF TWO-STREAM AND BUMP-IN-TAIL
EQUILIBRIA

Let us consider a two-humped equilibrium given by

F~v !5
n0D

2p S 1

~v2a!21D2
1

1

~v1a!21D2D , ~17!

whereD is a measure of the dispersion of the distributi
anda is a parameter associated with the distance between
two possible maxima. Ifa2,D2/3 this bi-Lorentzian distri-
bution degenerates into a one-humped equilibrium, which
consequently stable against linear perturbations, both in c
sical and quantum cases. The major advantage of dea
with Eq. ~17! is that it is amenable to exact calculations, th
providing an appropriate example of the use of the Nyqu
method for quantum plasmas. Moreover, it models the ph
cally relevant situation of two counterstreaming electr
populations that co-exist within the same plasma.

Inserting Eq.~17! into Eq. ~8!, we obtain the following
solutions:

v0
050, ~18!

v0
156~H22a22D212Aa21D2Aa22H2!1/2, ~19!
3-4
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v0
256~H22a22D222Aa21D2Aa22H2!1/2. ~20!

It is easy to check that the roots given in Eq.~20! are always
complex, whatever the values ofH, a, andD. However, the
roots ~19! can be real, provided

a2.
1

3
~H22D2!1

2

3
~D41H2D21H4!1/2. ~21!

Thus, there can be one or three relevant roots, accordin
condition ~21!. This inequality, when satisfied, can also
seen to implya2.D2/3, which is the same as the conditio
for the existence of two maxima. Hence, there can be th
real roots if and only ifF is two humped, which is not sur
prising in view of the arguments given in the preceding s
tion.

An equivalent and illuminating way to rewrite Eq.~21! is

H2,vmax
2 , ~22!

where vmax denotes the~positive! point whereF is maxi-
mum,

vmax5~a21D2!1/4~2a2Aa21D2!1/2. ~23!

Hence, 2H cannot exceed the distance between the
maxima ofF. Notice that the right-hand side of Eq.~23! can
be real only ifa2.D2/3, that is, if there are two maxima
which is again a natural result. For very large quantum
fects, only the rootv0

050 survives.
As there is no quantum Penrose functional, it is necess

to calculateDr at all possible roots~18! and~19!. We obtain

Dr~k,v5kv0
050!

511
vp

2

k2

~D21H22a2!

~H22a2!212D2~H21a2!1D4
,

~24!

which can be negative if and only if

a2.D21H2. ~25!

In addition

Dr~k,v56kv0
1!51116

vp
2Aa21D2~a22H2!a2d

k2U8
,

~26!

whered andU8 are the positive-definite quantities

d5Aa21D22Aa22H2, ~27!

U85$@~v02H !22a2#212D2@~v02H !21a2#1D4%

3$@~v01H !22a2#212D2@~v01H !21a2#1D4%.

~28!

We can show that Eq.~21! implies a2.H2, so thatDr as
given by Eq.~26! is indeed always positive.
02641
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In view of Eqs.~24! and ~26!, we see that Eq.~25! is a
necessary and sufficient condition for linear instability. Th
this condition is sufficient can be easily proven: suppose
we have found a wave numberk0 satisfying Eq.~25!; then
any k,k0 will also satisfy it; by takingk small enough, we
can make the second part of the rhs of Eq.~24! ~which is
negative! arbitrarily large in absolute value and therefore o
tain Dr,0. Note, however, that putting an equality sign
Eq. ~25! and solving fork doesnot provide the transition
wave number between stable and unstable behavior. In o
to obtain it, one has to set Eq.~24! to zero and solve fork.

Equation~25! means that the plasma can become unsta
for sufficiently largea ~the two maxima are sufficiently fa
apart!, smallD ~small dispersion! or smallH ~small quantum
effects!. We also notice that, asH depends on the wave num
ber, quantum effects can suppress the instability for sm
wavelengths. The instability condition Eq.~25! confirms the
numerical results by Suhet al. @19#. Here, however, we have
derived anexactanalytical criterion for quantum linear sta
bility of a two-stream equilibrium.

On Fig. 3, we have plotted the Nyquist diagrams for t
two-stream equilibrium of Eq.~17! with a53, D51, k
50.2 and four different values of\ ~units for whiche5«0
5m5n051 are used!. We observe that stabilization of th
k50.2 mode occurs somewhere between\525 and\527.
This is in agreement with the previous formulas: indee
with this set of parameters, it is found thatDr(k,v5kv0

0)
changes sign for\.25.5. Furthermore, Fig. 3 also shows
change in the topology of the Nyquist diagram. For Fig
3~a!–3~c!, the diagram intersects the horizontal axis in thr
points @excluding the point~1,0! that corresponds tov
56`#; note that two such points coincide, because of
symmetry of the distribution. For Fig. 3~d!, only one inter-
section survives. This change in topology corresponds
having one or three solutions to Eq.~8!, which is determined

FIG. 3. Nyquist diagrams for the two-stream equilibrium of E
~17! with a53, D51, k50.2, and\50.001~a!, 25 ~b!, 27 ~c!, and
40 ~d! ~units for whiche5«05m5n051 are used!. Diagrams~c!
and ~d! indicate that quantum effects have suppressed the inst
ity.
3-5
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by Eq. ~21!. The transition is found to occur for\.30,
which is in agreement with the diagrams of Fig. 3.

Finally, we point out that large quantum effects are n
necessarily stabilizing. For the two-stream equilibrium of E
~17!, with a53 and D51, the wave numberk50.287 is
classically stable. However, increasing\, one finds that
Dr(k,v5kv0

0) becomes negative on an interval appro
mately given by 7,\,11.8. This can be easily verified b
plotting Eq.~24! as a function of\ or by direct substitution
of the above values. However, this destabilizing effect occ
for rather limited ranges of\ and k. For example, wave
numbersk,0.28 are classically unstable and are stabiliz
for large enough\ ~as in our previous example withk
50.2); on the other hand, wave numbersk.0.29 are classi-
cally stable and remain stable for any value of\. Only wave
numbers very close to the valuek50.287 display the unusua
behavior described above. For this reason, we can still c
clude that the most likely outcome of quantum effects
stabilization.

We now show that we can explicitly write a distributio
function for which there can exist five real roots for Eq.~8!.
Consider the two-humped equilibrium

F~v !5
2n0

Apa3
v2 exp~2v2/a2!, ~29!

wherea is a parameter related to the equilibrium tempe
ture. As F(0)50, we should expect that Eq.~8! possesses
five real roots for some~large enough! H. We now give an
explicit proof of this fact for the above equilibrium. Th
solutions to Eq.~8! are obtained in this case from the equ
tion

tanhS 2Hv

a2 D 5G~v;H !, ~30!

where we have defined

G~v;H !5
2Hv

v21H2
. ~31!

Apart from the obvious rootv50, we can have two or fou
additional real roots. By plotting the left- and right-hand si
of Eq. ~30! as a function ofv ~see Fig. 4!, we can show that
there will be a total of five real roots if and only if

dG

dv
~v50!,

d

dv
tanhS 2Hv

a2 D ~v50!. ~32!

This implies that there can be five real roots providedH
.a, that is, for sufficiently large quantum effects. Otherwis
only three~semiclassical! solutions are possible.

In the remaining part of this section, we address the qu
tion of the quantum linear stability of an equilibrium chara
terized by a large distribution of electrons plus a small bu
in the tail. This is a standard problem in plasma physics, w
the small perturbation to the main distribution representin
beam injected in the plasma. Here, we consider the quan
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aspects of the problem, by using Nyquist diagrams. The
called bump-in-tail equilibrium has a single minimum, bu
as there is no quantum Penrose functional, we are lea
compute the real part of the dispersion function at all criti
points ~zeroes of the imaginary part of the dispersion fun
tion!. Nevertheless, the Nyquist technique is less expen
than, for instance, direct calculation of the dispersion re
tion, since it requires the value ofDr at a few points only.

To model the bump-in-tail equilibrium, we use the follow
ing distribution~see Fig. 5!

F5
2n0

3pa

@12A2~v/a!#2

@11~v/a!2#2
, ~33!

wherea.0 is a reference velocity that can be scaled to un
without loss of generality. Henceforth, we seta51. The dis-
tribution of Eq. ~33! is a particular case of a one-parame

FIG. 4. Plot of the left-hand side~solid line! and right-hand side
~dashed line! of Eq. ~30! as a function ofv, for a51 andH50.7 ~a!
andH51.2 ~b!. The inset is a zoom of the region 0.9,v,1.4 for
case~b!, showing in detail the extra solutions arising forH.a.

FIG. 5. Velocity distribution corresponding to the bump-in-ta
equilibrium of Eq.~33! for a5n051. Units are conveniently res
caled.
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family of bump-in-tail equilibria whose classical linear st
bility properties have been recently studied via Nyquist d
grams@20#. In the quantum case, there is no Penrose fu
tional and the analysis is more involved.

Inserting Eq.~33! into the determining equation, Eq.~8!,
we obtain the following equation forv0:

12A2~v01H !

11~v01H !2
56

12A2~v02H !

11~v02H !2
. ~34!

The plus sign yields the second-degree equation:v0
22A2v0

2H250, with solutions

v6~H !5
1

2
~A26A614H2!. ~35!

Note that, in the limitH→0, these solutions correspond
the two maxima of the equilibrium distribution. Taking th
minus sign in Eq.~34! yields the third-degree equation

A2v0
32v0

21A2~12H2!v02~11H2!50. ~36!

It is easy to prove that Eq.~36! has one real solution forH
,3 and three real solutions forH>3. Furthermore, the larg
est of such solutions is always positive, and coincides w
the minimum of the equilibrium distribution whenH50: we
shall call this solutionvm(H). The other two solutions
~which are real only whenH>3) have no classical counte
part, and will be calledvq1(H) and vq2(H). A graph of all
the roots of Eq.~34! as a function ofH is provided on Fig. 6.
Again, the existence of five real roots for some values ofH is
a consequence of the fact thatF(vmin)50.

As further calculations are rather cumbersome, we o
report here the most relevant results~mostly obtained using
the mathematical packageMAPLE!. For H>3, we have ob-
tained numerically, using Eq.~12!, that Dr(k,v5kvq1).0
andDr(k,v5kvq2).0. At least for this particular example
this can be shown to imply that the purely quantum solutio
are irrelevant to the linear stability properties of the equil
rium. Moreover, we have found numerically thatDr@k,v
5kv2(H)#.0. After an involved analysis to determine th
ordering of all the solutions for Eq.~8!, the conclusion is tha
the unstable modes satisfy

FIG. 6. Plot of the rootsv0 of Eq. ~34! as a function ofH. The
dashed lines represent the rootsv6 in Eq. ~35!; the solid lines
represent solutions of the cubic equation~36!.
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Dr@k,v5kvm~H !#,0, Dr@k,v5kv1~H !#.0.
~37!

This holds whatever the value ofH. Remembering the de
pendence ofH on the wave number and taking into accou
the explicit forms ofvm(H) andv1(H), it appears that the
pair of conditions~37! are very complicated expressions ofk
and \. However, using appropriated units in whichn05vp
5m51, we were able to solve Eq.~37! numerically for a
few values of\ ~measured in units ofma2/vp). For \50,
we found that the unstable modes satisfy 0.18,k,0.82,
wherek is measured in units ofvp /a. This is the classical
condition for linear instability. For\510, the instability
range is given by 0.20,k,0.36. We see that the total ban
of instability becomes smaller for a nonzero Planck’s co
stant. Further increasing\, taking\5100, we found that the
unstable linear waves must satisfy 0.15,k,0.17. For even
larger quantum effects, there is virtually a suppression of
unstable modes. This is again in agreement with the num
cal results of Suhet al. @19#, where large quantum effect
were shown to stabilize all classically unstable modes fo
two-stream equilibrium.

V. CONCLUSION

In this paper, we have discussed the Nyquist method
the study of the linear stability of spatially homogeneo
quantum plasmas described by the Wigner-Poisson sys
For classical Vlasov-Poisson plasmas, this method provid
simple way to analyze the stability properties. Furthermo
for the special case of two-stream equilibria, one can c
struct a simple functional~known as Penrose functional!,
whose sign determines whether unstable modes exist.

The main conclusion of the present work is that the s
bility analysis of quantum plasmas is generally subtler th
in the classical case. In particular, we have shown that
simple analog of the Penrose functional can be constructe
order to determine the stability properties of a two-hump
equilibrium. Hence, a detailed analysis is necessary for e
particular case, with generic and universal conclusions be
more difficult to obtain. However, we were able to prove th
one-humped equilibria~i.e., with a distribution that is a
monotonically decreasing function of the energy! are always
stable: this is the same result as for classical plasmas.

The main mathematical reason for the subtler behavio
quantum plasmas is that the wave number now enters
real part of the dispersion function through the parame
H5\k/2m. This can change the topology of the Nyqui
diagram, not only by varying\, but also by varying the wave
number at fixed\. Physically, this means that new unstab
modes can arise by resonant interaction between the q
tum velocity H and some other typical plasma velocity. In
deed, such purely quantum unstable modes have been
served@16# for the special case of two-stream equilibrium

F~v !5
n0

2
d~v2a!1

n0

2
d~v1a!, ~38!
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where d is the Diracd function and6a the velocities of
each stream. This equilibrium can be amenable to exact
culation @16#.

Even when general or exact results cannot be obtain
the Nyquist technique can be successfully used for the s
of particular equilibria, as was shown in Sec. IV. The b
Lorentzian equilibrium treated in that section has shown t
large quantum effects generally contribute to stabilize per
bations@19#. This is not always the case, however, and
have produced an explicit example of a wave number tha
classically stable and becomes unstable for finite\. More-
over, the Nyquist method has enabled us to derive an e
r,

. B

02641
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stability criterion for such a bi-Lorentzian equilibrium. Th
Nyquist technique was also applied to a classically unsta
bump-in-tail equilibrium. Again, large quantum effects we
shown to reduce the range of unstable wave numbers.
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